Source code for esbo_etc.classes.sensor.PixelMask

import astropy.units as u
from ...lib.logger import logger
from ...lib.helpers import rasterizeCircle
import numpy as np


[docs]class PixelMask(np.ndarray): """ A class for modelling the pixel exposure mask for a pixel array. """ @u.quantity_input(pixel_geometry=u.pix, pixel_size="length", center_offset=u.pix) def __new__(cls, pixel_geometry: u.Quantity, pixel_size: u.Quantity, center_offset: u.Quantity): """ Create a new pixel mask. Each coordinate is now converted to a index representation (y, x). Parameters ---------- pixel_geometry : u.Quantity The geometry of the pixel array in pixels [x, y] pixel_size : length-Quantity The edge length of a pixel (assumed to be square). center_offset : u.Quantity The offset of the PSF-center relative to the center of the detector array as length-quantity with two entries: [offset in x-direction, offset in y-direction] """ # Create the ndarray instance of our type, given the usual # ndarray input arguments. This will call the standard # ndarray constructor, but return an object of our type. # It also triggers a call to PixelMask.__array_finalize__ obj = super(PixelMask, cls).__new__(cls, (int(pixel_geometry.value[1]), int(pixel_geometry.value[0])), dtype=float, buffer=None, offset=0, strides=None, order=None) obj[:, :] = 0 # set the new attributes to the values passed obj.pixel_geometry = [pixel_geometry[1], pixel_geometry[0]] obj.pixel_size = pixel_size obj.center_ind = [pixel_geometry[1].value / 2 - 0.5, pixel_geometry[0].value / 2 - 0.5] obj.psf_center_ind = [obj.center_ind[0] + center_offset[1].value, obj.center_ind[1] + center_offset[0].value] # Finally, we must return the newly created object: return obj def __array_finalize__(self, obj): # ``self`` is a new object resulting from # ndarray.__new__(PixelMask, ...), therefore it only has # attributes that the ndarray.__new__ constructor gave it - # i.e. those of a standard ndarray. # # We could have got to the ndarray.__new__ call in 3 ways: # From an explicit constructor - e.g. PixelMask(): # obj is None # (we're in the middle of the InfoArray.__new__ # constructor, and self.pixel_geometry will be set when we return to # PixelMask.__new__) if obj is None: return # From view casting - e.g arr.view(PixelMask): # obj is arr # (type(obj) can be PixelMask) # From new-from-template - e.g mask[:3] # type(obj) is PixelMask # # Note that it is here, rather than in the __new__ method, # that we set the default value for our attributes, because this # method sees all creation of default objects - with the # PixelMask.__new__ constructor, but also with # arr.view(PixelMask). self.pixel_geometry = getattr(obj, 'pixel_geometry', None) self.pixel_size = getattr(obj, 'pixel_size', None) self.center_ind = getattr(obj, 'center_ind', None) self.psf_center_ind = getattr(obj, 'psf_center_ind', None) # We do not need to return anything
[docs] @u.quantity_input(radius=u.pix, center_offset=u.pix) def createPhotometricAperture(self, shape: str, radius: u.Quantity, center_offset: u.Quantity = None): """ Create a photometric aperture on the pixel mask. Parameters ---------- shape : str Shape of the photometric aperture. This can be either 'circle' or 'square'. radius : u.Quantity The radius of the photometric aperture in pixels. In case of a square, the radius equals the half of the side length. center_offset : u.Quantity The offset of the photometric aperture's centre with respect to the array's centre in pixels [x ,y]. The origin of the coordinate system is in the upper left corner. Returns ------- """ # Calculate the center coordinates if center_offset is not None: xc = self.pixel_geometry[1] / 2 - 0.5 * u.pix + center_offset[0] yc = self.pixel_geometry[0] / 2 - 0.5 * u.pix + center_offset[1] else: xc = self.psf_center_ind[1] * u.pix yc = self.psf_center_ind[0] * u.pix if (xc + radius).value > self.pixel_geometry[0].value - 1 or (xc - radius).value < 0 or\ (yc + radius).value > self.pixel_geometry[1].value - 1 or (yc - radius).value < 0: logger.warning("Some parts of the photometric aperture are outside of the array.") if shape.lower() == "circle": # Rasterize a circle on the grid rasterizeCircle(self, radius.value, xc.value, yc.value) elif shape.lower() == "square": # Rasterize a square on the grid # Calculate the left, right, upper and lower bounds of the square x_right = int(round((xc + radius - 1e-6 * u.pix).value)) if x_right > self.pixel_geometry[0].value - 1: x_right = self.pixel_geometry[0].value - 1 x_left = 0 if (xc - radius).value < 0 else int(round((xc - radius + 1e-6 * u.pix).value)) y_low = int(round((yc + radius - 1e-6 * u.pix).value)) if y_low > self.pixel_geometry[1].value - 1: y_low = self.pixel_geometry[1].value - 1 y_up = 0 if (yc - radius).value < 0 else int(round((yc - radius + 1e-6 * u.pix).value)) # Mark the pixels contained in the square with 1 self[y_up:(y_low + 1), x_left:(x_right + 1)] = 1 else: logger.error("Unknown photometric aperture shape: '" + shape + "'.")