Source code for esbo_etc.classes.psf.IPSF

from abc import ABC, abstractmethod
import astropy.units as u
from ..sensor.PixelMask import PixelMask
from typing import Union
import numpy as np


[docs]class IPSF(ABC): """ Interface for modelling a PSF """
[docs] @abstractmethod def calcReducedObservationAngle(self, contained_energy: Union[str, int, float, u.Quantity], jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> u.Quantity: """ Calculate the reduced observation angle in lambda / d_ap for the given contained energy. Parameters ---------- contained_energy : Union[str, int, float, u.Quantity] The percentage of energy to be contained within a circle with the diameter reduced observation angle. jitter_sigma : Quantity Sigma of the telescope's jitter in arcsec obstruction : float The central obstruction as ratio A_ob / A_ap Returns ------- reduced_observation_angle: Quantity The reduced observation angle in lambda / d_ap """ pass
[docs] @abstractmethod def mapToPixelMask(self, mask: PixelMask, jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> PixelMask: """ Map the integrated PSF values to a sensor grid. Parameters ---------- obstruction mask : PixelMask The pixel mask to map the values to. The values will only be mapped onto entries with the value 1. jitter_sigma : Quantity Sigma of the telescope's jitter in arcsec obstruction : float The central obstruction as ratio A_ob / A_ap Returns ------- mask : PixelMask The pixel mask with the integrated PSF values mapped onto each pixel. """ pass
@staticmethod def _rebin(arr: np.ndarray, factor: float): """ Rebin a 2D-array by summing or repeating the elements. Parameters ---------- arr : ndarray Input array. factor : float Rebinning factor Returns ------- rebinned_array : ndarray If the factor is smaller than 1, the data is summed, if the factor is bigger than 1, array elements are repeated See Also -------- resize : Return a new array with the specified factor. """ m, n = arr.shape m_new, n_new = int(m * factor), int(n * factor) if factor < 1: res = arr.reshape((m_new, int(1 / factor), n_new, int(1 / factor))).sum(3).sum(1) elif factor > 1: res = np.repeat(np.repeat(arr, int(factor), axis=0), int(factor), axis=1) else: res = arr if isinstance(arr, PixelMask): res.pixel_size = res.pixel_size / factor return res