Stratospheric Balloons
A potential platform for the next large FIR observatory

P. Maier1, J. Wolf1, T. Keilig1, A. Pahler1, S.
Bougneroua1, A. Krabbe1, R. Duffard4, J. L. Ortiz4, S.
Klinkner1, M. Lengowski1, T. Müller5, C.
Lockowandt2, C. Krockstedt2, N. Kappelmann3, B.
Stelzer3, K. Werner3, S. Geier3,6, C. Kalkuhl3, T.
Rauch3, T. Schanz3, J. Barnstedt3, L. Conti3, L. Hanke3,
M. Kaźmierczak-Barthel1
1Institute of Space Systems, University of Stuttgart, Germany, 2Swedish
Space Corporation, Sweden, 3Institut für Astronomie und Astrophysik,
Universität Tübingen, Germany, 4Instituto de Astrofísica de Andalucía (CSIC), Spain, 5Max-Planck-Institut für extraterrestrische Physik,
Germany, 6Institut für Physik und Astronomie, Universität Potsdam,
Germany

Presented by P. Maier
International Astronautical Congress 2018
Bremen, Germany
04.10.2018
1. Introduction: The ESBO DS Project
2. The Challenge – Science
3. The Challenge – Technology
4. Balloons as an Answer
5. How good would it get?
6. How do we get there? – ESBO Vision
1 - The ESBO DS Project

• Who?
 o University of Stuttgart, Institute of Space Systems (DE)
 o Swedish Space Corporation (SSC, SE)
 o Universität Tübingen (DE)
 o Max Planck Institute for extraterrestrial Physics (MPE, DE)
 o Instituto de Astrofísica de Andalucía (IAA, ES)

• What?
 o Design study for a balloon-based research infrastructure
 o Focus on regular, observatory type operations & easy access
 o Construction of a prototype UV/vis flight system
 o Conceptual design of a FIR balloon observatory

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777516.
1 – The ESBO DS Project

Sunrise
- Solar Telescope
- UV/vis
- 0.1 arcsec resolution
- 1 m aperture
- Mass: 2 t

BLAST
- Submm telescope
- 205, 350, 500 µm
- 2 m aperture
- Mass: 1.8 t

PoGO+
- X-Ray telescope
- 600 kg telescope
- Mass: ~1.5 t

Sounding Balloons
- Visible camera
- 7 cm aperture
- Mass: 3 kg
A short reminder:
Selected upcoming science areas

Survey needs
- FIR continuum maps after IRAS
 - IRAS: 1.5 arcmin resolution
 - -> high spatial resolution
- FIR line maps (Galactic / extragalactic)
 - [CII], [OI], CO,…
 - -> high spectral & spatial resolution

Discrete sources
- FIR ice features
 - Determine structure & phase transitions
 - -> medium spectral resolution
- Spectroscopy of light hydrides
 - -> high spectral resolution

Cosmic Vision Themes

1) What are the Conditions for Planet Formation and the Emergence of Life?
Formalhaut: ESA/Herschel/PACS/ Bram Acke

4) How Did the Universe Originate and What is it Made of?
Andromeda: ESA/Herschel/PACS/ SPIRE/O. Krause, HSC, H. Linz
Main requirements for future FIR missions (the old mantra):

- **Higher sensitivity**
 - Larger telescopes, cooled telescopes -> SPICA

- **Higher angular resolution**
 (also: to overcome confusion limit)
 - Larger telescope or interferometry

- **Higher spectral resolution**
 - Heterodyne instruments

- **Longer observation times**
 More survey coverage (e.g. FIR cooling lines)

- **More detectors**
 More survey coverage

- **Unmanned**
 (wrt SOFIA -> less safety issues)
4 – Balloons as an Answer?

Why balloons?

- **Observation conditions „between ground & space“**
 - Above 99 % of atmospheric mass
 - Above 99.99 % of water vapour

- **Flight altitude:**
 - 30 to 40 km

- **Flight duration:**
 - Up tp ~40 days (zero pressure balloons)

- **Suspended mass:**
 - Up to 3,600 kg

- **5 m x 2.5 m telescope:**
 - 2x SOFIA spatial resolution, increase of Herschel's confusion limit
 - Similar collecting area as Herschel
 - Gregorian Off-Axis design

- **Practical implications:**
 - Exchange of instruments
 - Update & repair of instruments
 - Refill of cryogens
5 – How good would it get?

Performance for science applications

- **FIR line maps** (Galactic / extragalactic)
 - [CII], [OI], CO, ...
 - Mapping of M32 in ca. 1 year (~40 observation days)

- **FIR continuum maps after IRAS**
 - IRAS: 1.5 arcmin resolution @100 µm
 - ESBO 5 m: 5 arcsec @100 µm

- **FIR ice features**

- **Spectroscopy of light hydrides**
 - See table on the right

Potential Sensitivities
(900 s exposure time, 4 σ, ca. 44 kHz, i.e. 0.003 to 0.01 km/s resolution)

Selected lines of light hydrides
(900 s exposure time, 4 σ, ca. 44 kHz, i.e. 0.003 to 0.01 km/s resolution)

<table>
<thead>
<tr>
<th>Species</th>
<th>Wavelength</th>
<th>Line sensitivity [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 km</td>
<td>30 km</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>181.05 µm</td>
<td>8.95·10⁻¹⁶</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>100.87 µm</td>
<td>1.59·10⁻¹⁶</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>100.58 µm</td>
<td>5.82·10⁻¹⁶</td>
</tr>
<tr>
<td>CH⁺</td>
<td>179.62 µm</td>
<td>-</td>
</tr>
<tr>
<td>CH⁺</td>
<td>90.03 µm</td>
<td>-</td>
</tr>
<tr>
<td>CH⁺</td>
<td>72.14 µm</td>
<td>5.59·10⁻¹⁶</td>
</tr>
<tr>
<td>HF</td>
<td>121.70 µm</td>
<td>-</td>
</tr>
<tr>
<td>HF</td>
<td>81.22 µm</td>
<td>-</td>
</tr>
</tbody>
</table>

10x
6 – How to get there

Potential ESBO Timeline

<table>
<thead>
<tr>
<th>Idea</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations & Governance</td>
<td>ESBO organisation founded</td>
</tr>
<tr>
<td>„FIR“ flight system</td>
<td>Science flights of „FIR“ System</td>
</tr>
<tr>
<td>Intermediate extension</td>
<td>Science flights with new instruments</td>
</tr>
<tr>
<td>„UV“ flight system</td>
<td>Possibly with NIR capabilities</td>
</tr>
</tbody>
</table>

2016 2018 2021 2023 2025 2033
Thank you for your attention!

Your input is welcome!
We welcome scientific & experimental collaboration
Safe landing & recovery
Safe Landing
Backup II

UV/vis Prototype Mission
UV/vis prototype (0.5 m)

Flight-ready Prototype

Telescope/Platform

- 0.5 m UV-NIR Telescope
- 400-500 kg Gondola
- Coarse telescope stabilization in azimuth & elevation
- Exchangeable instruments
- Space for add-on instruments

Instruments

- Highly sensitive imaging UV-camera (180 - 330 nm)
- Andor-camera for the visible range (330 – 1000 nm)
- Image stabilization within the optical path (goal: ~ 0.5 arcsec)

PoGO+ gondola, built by SSC. Credit: SSC.
Main Telescope Parameters

<table>
<thead>
<tr>
<th>Scientific Application / Main Instrument</th>
<th>Secondary Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Custom MCP*</td>
</tr>
<tr>
<td>Main application</td>
<td>UV Photometry</td>
</tr>
<tr>
<td>Main wavelength range</td>
<td>180 – 330 nm</td>
</tr>
<tr>
<td>Sensor size</td>
<td>40 mm Ø</td>
</tr>
<tr>
<td>Pixel size</td>
<td>20 µm x 20 µm</td>
</tr>
<tr>
<td>Preferred FOV</td>
<td>Ca. 32 arcmin Ø</td>
</tr>
<tr>
<td>Instrument</td>
<td>Andor iXon</td>
</tr>
<tr>
<td>Main application</td>
<td>Image stabilisation</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>Ca. 330 – 1000 nm</td>
</tr>
<tr>
<td>Sensor size</td>
<td>13.3 mm x 13.3 mm</td>
</tr>
<tr>
<td>Pixel size</td>
<td>13 µm x 13 µm</td>
</tr>
</tbody>
</table>

Current Telescope configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Cassegrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>500 mm</td>
</tr>
<tr>
<td>Focal ratio</td>
<td>f/8</td>
</tr>
</tbody>
</table>

MCP = Micro Channel Plate
Flight option Prototype Flight

“Turnaround Conditions” over Esrange / Kiruna

Environmental Conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight duration:</td>
<td>10-40 h</td>
</tr>
<tr>
<td>Flight altitude:</td>
<td>Ca. 40 km</td>
</tr>
<tr>
<td>Season of flight:</td>
<td>2nd half of August 2021</td>
</tr>
<tr>
<td>Ambient pressure:</td>
<td>> 3 mbar</td>
</tr>
<tr>
<td>External air temperature (flight):</td>
<td>-70 deg C</td>
</tr>
<tr>
<td>Air temperatures (ground):</td>
<td>-15 deg C</td>
</tr>
</tbody>
</table>